
J
H
E
P
0
5
(
2
0
0
6
)
0
6
6

Published by Institute of Physics Publishing for SISSA

Received: March 1, 2006

Revised: May 12, 2006

Accepted: May 14, 2006

Published: May 25, 2006
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1. Introduction

The degrees of freedom and the dynamics of the QCD string have been the object of

detailed studies in recent years (see [1] for a review). The energy stored in the gauge field

in the presence of a distant static QQ̄ pair grows linearly with their separation R (see e.g.

[2, 3] for recent data) in the pure SU(N) theory, suggesting that the flux-lines running

between the two color charges behave like a string with a string tension σ.

From this hypothesis, it follows in a natural way that the leading correction to the

linear potential corresponds to Gaussian quantum fluctuations of the string around its

classical configuration [8], and leads to a regularly spaced low-energy string spectrum with

a gap of π/R. This has been verified numerically with remarkable accuracy [4, 9 – 11].

An elegant way to connect the string-theory predictions with a (gauge-invariant) ob-

servable of the gauge theory is to consider the free energy of the QQ̄ pair when inserted

inside a thermal heatbath with time extent T . The latter observable is then the Polyakov

loop correlator [2, 6] P ∗(x) P (y), and a systematic expansion in (σRT )−1 for its expec-

tation value beyond the area law was proposed in [5]. The free-string partition function

reads [4, 5, 14] (in the notation of [5], except for Ẽn → M̃n)

Z0(T, r) = e−σRT−µT η(q)2−d, q ≡ e−πT/r (1.1)

where

η(q) = q
1
24

∞
∏

n=1

(1 − qn). (1.2)
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Due to the latter function’s modular transformation property, Z0 can be expanded either

in terms of eigenstates of the open-string or the closed-string sector [5],

Z0(T, r) =

∞
∑

n=0

wn e−E0
n
T (1.3)

= e−µT

(

T

2r

)
1
2
(d−2) ∞

∑

n=0

wn e−M̃0
n
r. (1.4)

with

E0
n(r) = µ + σr +

π

r

(

−d − 2

24
+ n

)

(1.5)

M̃0
n(T ) = σT +

4π

T

(

−d − 2

24
+ n

)

(1.6)

the energies of the open and closed string states respectively. The low-lying closed-string

spectrum has also been investigated recently [12, 13]. The next order of the expansion will

be discussed below.

The idea of a derivative expansion in the transverse fluctuations was already present

in [8]. The work of Polchinski and Strominger [16] was the first to aim at making predic-

tions beyond the universal 1/r corrections. It has the merit of being manifestly Poincaré

invariant, and to give the possibility of an insight into how the worldsheet degrees of

freedom are related to those of the underlying quantum field theory. The more recent

approach of Lüscher and Weisz [5] has the nice feature that once the two-dimensional field

theory has been postulated and the degrees of freedom identified, the most general inter-

actions, including boundary operators, can be written down automatically. It seems that

the Polchinski-Strominger prescription of plugging the induced metric into the Polyakov

determinant fixes the coefficient of the 1/r3 energy corrections, whereas (in d = 4) they

are multiplied by an undetermined coefficient in the Lüscher-Weisz effective theory.

In this paper, we address the question whether the proposed effective theory is con-

sistent with Poincaré invariance. Indeed, string theories such as the Nambu-Goto string

can be formulated in a form where the latter symmetry is manifest. In an effective string

theory the symmetry is in general not manifest. We will however show that to any finite

order in the string expansion all closed string states admit a relativistic dispersion relation,

E2(p) = M2 +p2 (this property cannot be discussed for the open-string states because they

are attached to static charges). The proof is simple and does not rely on the details of the

effective theory, but only on the rotation symmetry of infinite space around the worldline

of a static quark, and the requirement that open-closed string duality holds order by order

in an expansion in powers of 1/distance.

Section 2 describes the setup and gives the proof to the statement made. Section 3

and 4 contain the explicit calculation of the closed-string dispersion relation and Polyakov

loop matrix element between the vacuum and the energy eigenstates in the Lüscher-Weisz

theory, at leading and at the next order respectively; the constraints on the theory’s un-

known coefficients are rederived. Section 5 generalizes the discussion to the case of compact

– 2 –
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Figure 1: The setup with two Polyakov loops located at x and y winding in direction µ = 0.

dimensions transverse to the Polyakov-loop plane. A conclusion summarizes the results ob-

tained.

2. Fourier representation of the Polyakov loop correlator

In this section we focus on the situation where all dimensions, except possibly the one

around which the Polyakov loops wind, are much larger than their separation. For two

d-dimensional vectors

x ≡ (0, x1, . . . , xd−2, 0) and y = (0, 0, . . . , 0, r),

we have

〈P ∗(x) P (y)〉 = f(~x, r, T ) (2.1)

where ~x = (x1, . . . , xd−2) is a (d − 2)-dimensional vector and, in the lattice regularized

gauge theory,

P (x) = Tr{Uµ(x)Uµ(x + aµ̂) . . . Uµ(x + (T − a)µ̂)}µ=0. (2.2)

See figure 1. We consider the Fourier representation of f with respect to x:

f(~x, r, T ) =

∫

dd−2~p

(2π)d−2
c(~p, r, T ) ei~p·~x, (2.3)

The Fourier coefficients c are conversely given by

c(~p, r, T ) =

∫

dd−2~x e−i~p·~x f(~x, r, T ), (2.4)

=
1

Vd−2
〈 O∗(0) O(r) 〉. (2.5)

where generically

O(r) ≡
∫

dd−2~z ei~p·~z P (0, z1, z2, . . . , zd−2, r) (2.6)

– 3 –
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and Vd−2 is the volume of the space parametrized by x1, . . . , xd−2. These coefficients

thus represent correlation functions of Polyakov loops with a definite momentum ~p along

directions 1 through d− 2. On general grounds, the spectral representation of c(~p, r, T ) in

the gauge theory (e.g. in terms of eigenstates of the transfer matrix of the lattice-regularized

gauge theory along the direction labelled by d − 1) reads

c(~p, r, T ) =
∑

n≥0

|vn(~p, T )|2 e−Ẽn(~p,T )r. (2.7)

Thus the dispersion relation of the winding flux-tube states can be read off from this

quantity.

The SO(d− 1) rotational symmetry around one Polyakov loop implies that the corre-

lator is a function of a reduced number of variables:

f(~x, r, T ) = ϕ(
√

r2 + ρ2, T ), ρ ≡ |~x|. (2.8)

Due to the SO(d − 2) symmetry in the dimensions 1, . . . , d − 1, c obviously depends on ~p

only through |~p|, and so do vn and En. How the remaining SO(d− 1)/SO(d− 2) ' SO(2)

symmetry is reflected in these functions is the subject of the following section.

2.1 Boost invariance and the two-point function of a local operator

In this section, we drop the T -dependence of c, vn and En, because it will play no role. In

particular, what follows applies just as well to the two-point function of QCD operators

such as Tr F 2
µν , ψ̄Γψ, etc. in d−1 dimensions. Starting from eq. (2.4) with f given by (2.8),

it is easy to show that
∂

∂r

∂

∂p
c(p, r) = pr c(p, r) (2.9)

Conversely, if c(~p, r) satisfies eq. (2.9), it is clear that the function f defined by eq. (2.3)

satisfies (ρ∂r − r∂ρ)f(ρ, r) = 0, which implies that f is of the form (2.8)1. Thus no

information about the symmetry has been lost in going from (2.8) to (2.9).

For a function c admitting an absolutely convergent spectral representation as in (2.7),

eq. (2.9) is equivalent to

∑

n≥0

e−Ẽn(p)r

[

|vn(p)|2
(

1 − d

d(p2)
Ẽ2

n(p)

)

+
2

r

d

d(p2)

(

|vn(p)|2Ẽn(p)
)

]

= 0, ∀(p, r). (2.10)

In particular, dividing by e−Ẽ0(p)r, and letting r → ∞, only the n = 0 term remains. In

this way we learn that, for n = 0,

d

d(p2)
Ẽ2

n(p) = 1, i.e. Ẽ2
n(p) = Ẽ2

n(0) + p2, (2.11)

and the momentum dependence of the matrix elements v0 is also fixed:

|vn(p)|2 =
bn

Ẽn(p)
. (2.12)

1Indeed, f is then invariant under an infinitesimal rotation (ρ, r) → (ρ + θr, r − θρ).
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Thus the n = 0 term does not contribute to eq. (2.10). One may then iterate the argument

for n = 1, 2, . . ., showing that eq. (2.11) and (2.12) hold for all states. If say a double

degeneracy occurs, one can only conclude that the sum of the |vn(p)|2 are inversely propor-

tional to the common energy. However exact degeneracies normally only occur in quantum

field theory for symmetry reasons, in which case one also expects the |vn(p)|2 of the two

states to be equal.

One may draw two conclusions: the states that contribute to a correlator such as c

defined in eq. (2.4) with f(~x, r) of the form (2.8) necessarily admit a relativistic dispersion

relation. Conversely, for relativistic |vn(p)|2 and Ẽn(p), f(~x, r) is of the form (2.8); which

implies in particular a central potential for the QQ̄ pair.

It is instructive to ask oneself which step of the argument fails to hold in the case of a

non-relativistic theory. In that case, the Euclidean time-direction plays a special role and

cannot be interchanged for a spatial coordinate. Thus if x0 is taken to be the time-direction,

then eq. (2.8) holds by spatial rotation symmetry, but eq. (2.7) does not hold in general,

and even if it does the Ẽn(p) are not the eigenvalues of the Hamiltonian, which governs

the evolution of states in the x0 direction rather than in the xd−1 direction. Alternatively,

if it is xd−1 that plays the role of time, then eq. (2.8) does not hold (ρ is now a spatial and

r a temporal separation), precisely because the theory does not have the relativistic boost

invariance.

2.2 Boost invariance in an effective string theory

As we shall see in the explicit calculations of sections 3 and 4, the Lüscher-Weisz effective

string theory, worked out to order m, generically produces an expression for c(p, r) of the

form

cm(p, r) =
∑

n

e−Ẽn(p)r
∞
∑

k=−km

γ
(m)
nk (p)

rk
. (2.13)

Here we assume that this correlator has been obtained by performing an integral of the

type (2.4) with f(~x, r) of the form (2.8). Then eq. (2.9) implies βnk(p) = 0 ∀n, k where

βnk(p) ≡ γ
(m)
nk (p)

(

1 − d

d(p2)
Ẽ2

n(p)

)

+
2

Ẽn(p)1−k

d

d(p2)

(

Ẽn(p)2−kγ
(m)
n,k−1(p)

)

+2(k − 2)
d

d(p2)
γ

(m)
nk−2(p), k ≥ −km (2.14)

with the understanding γ
(m)
n,−km−1 = γ

(m)
n,−km−2 = 0. For k = −km, the equation teaches us

that Ẽn(p)2 = M̃2
n + p2.

It is a straightforward exercise to show by induction that these conditions imply

γ
(m)
nk (p) = Ẽn(p)k−1

k+km
∑

j=0

α
(m)
n,k−j(k − 1)(k − 2) . . . (k − 2j)

j!(2Ẽ2
n(p))j

(2.15)

where the α
(m)
nk (k ≥ −km) are real numbers.

– 5 –
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2.2.1 Energy corrections

The computational scheme is meant to hold order by order in powers of inverse distance, so

that the terms with positive powers of r in c(p, r) must be interpreted as giving the energy

shifts of the closed-string states. It is not a priori obvious that the argument of section 2.1

goes through, since the terms of the exponential that are missing are not uniformly small

in r. We will nevertheless show that the energy shifts preserve the relativistic dispersion

relation.

If the scheme is to be at all consistent, the energy shifts must be given by the ratio of

the r1 to the r0 coefficients:

δẼ(m)
n (p) = −

γ
(m)
n,−1(p)

γ
(m)
n,0 (p)

(2.16)

The understanding is that the fraction should be expanded in powers of Ẽn(p)−1 and that

the terms beyond the kth
m power ought to be neglected. For the quadratic, cubic, etc. terms

to be consistent with the Taylor expansion of the exponential function, one finds that the

numerical coefficients α
(m)
nk must be related by

α
(m)
n,−k

α
(m)
n0

=
1

k!

(

α
(m)
n,−1

α
(m)
n0

)k

, k ≥ 0. (2.17)

Thus

γ
(m)
n,−k(p) =

α
(m)
n0

Ẽn(p)k+1k!

(

α
(m)
n,−1

α
(m)
n0

)k km−k
∑

j=0

(2j + k)!

j!(j + k)!

(

α
(m)
n,−1

2α
(m)
n0 Ẽ2

n(p)

)j

0 ≤ k ≤ km. (2.18)

On the other hand, if E(p) satisfies the relativistic dispersion relation, then so does

E(p)(1 + x(p)) if and only if

x(p) = −1 +
√

1 + x0(x0 + 2)(M/E(p))2 , (2.19)

where x0 ≡ x(0) and M = E(p = 0). It is now a lengthy but straightforward exercise to

check that eq. (2.16) and (2.18) satisfy this condition up to order 1/Ẽ2
n(p)km+1 corrections

and as a by-product one finds

−δM̃
(m)
n

M̃n

=

km
∑

j=1

(

α
(m)
n,−1

α
(m)
n0 M̃2

n

)j

(2j − 3)!!

j!
. (2.20)

(with the convention (−1)!! = 1). At this stage, one may consider that the series is actually

of the form (2.21), where the energy levels must now be understood as the ones including

the corrections (2.20). The analysis of the next section thus applies.

In summary, the type of expressions one obtains for c(p, r) from a long-distance effective

theory for a sector of very massive states is such that the latter automatically admit

a relativistic dispersion relation as soon as the expression is made consistent with the

form expected from a spectral representation. In general these consistency requirements

– 6 –
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will constrain the parameters of the effective theory. We saw that rotation invariance

implies that the γ
(m)
n,−k, 0 ≤ k ≤ km are parametrized in terms of (km + 1) numbers α

(m)
n,−k,

0 ≤ k ≤ km. The requirement of the exponentiation of these terms leads to km − 1

conditions, so that to any order, there are exactly two free parameters per energy level,

α
(m)
n0 and α

(m)
n,−1, which determine the overlap and energy of each state n. If the effective

theory can satisfy these km − 1 conditions, the scheme is thus consistent to all orders.

2.2.2 Cancelling powers of 1/r

We now suppose that the string-theory parameters have been tuned so as to give a definite-

momentum correlator of the form

cm(p, r) =
∑

n

e−Ẽ
(m)
n (p)r

∞
∑

k=0

γ
(m)
nk (p)

rk
. (2.21)

with the Ẽ
(m)
n (p) satisfying the relativistic dispersion relation. The functional form is

only consistent with the spectral representation (2.7) if one is able to further tune the free

parameters of the theory to cancel the terms k = 1, . . . , km, and one then neglects the terms

with k > km. This tuning is possible for the first two orders of the Lüscher-Weisz theory

(see [5] and the next two sections). Eq. (2.9) applied to the form (2.21) leads to eq. (2.14)

with km = 0. As we assume γ
(m)
n0 (p) 6= 0, βn0(p) = 0 requires the relativistic dispersion

relation (2.11), and the next equation then implies (2.12). At k = 1, one finds that γ
(m)
n1 (p)

is independent of p; note that the boost symmetry does not imply a relation between the

αn,k>0 and αn,k≤0. Further on, it is clear that if γ
(m)
nk (p) = 0 for k = 1, . . . ,m− 1, then the

momentum dependence of the next coefficient is very simple:

γ
(m)
nk (p) = γ

(m)
nk (0)

(

Ẽ
(m)
n (p)

M̃n

)k−1

. (2.22)

In particular, it vanishes identically if and only if it vanishes at p = 0.

The conclusion is that for any effective theory of f(~x, r, T ) which produces an ex-

pression of the type (2.21) with γ
(m)
n0 (p) 6= 0, rotation symmetry automatically implies

the relations Ẽm
n (p) =

√

p2 + (̃Mm
n )2 and γ

(m)
n0 (p) ∝ (Ẽm

n (p))−1 and also determines the

momentum dependence of γ
(m)
nk≥1(p). Cancelling systematically the latter in the effective

theory thus allows one to interpret Ẽn(p) as the energies of relativistic closed strings. This

can be done order by order consistently with Euclidean rotation symmetry, the technical

reason being that the derivative w.r.t. and the multiplication by r in the identity (2.9) act

locally on the power series in 1/r.

3. The free bosonic string theory

The effective theory (1.1) makes a prediction for the Polyakov loop correlator (2.1) for

any separation. In this section we exploit this fact to compute the Polyakov correlators

of definite momentum explicitly, thus extracting the predicted dispersion relation for the

closed string states.

– 7 –



J
H
E
P
0
5
(
2
0
0
6
)
0
6
6

4 dimensions

Since the spatial dimensions have SO(3) as symmetry group, c0(~p, r, T ), the free-string

theory prediction for c(~p, r, T ), can be computed straightforwardly:

c0(~p, r, T ) = e−µT

∫

d2~x e−i~p·~x T

2
√

|~x|2 + r2

∑

n≥0

wn e−M̃0
n

√
r2+|~x|2. (3.1)

We obtain

c0(p, T, r) = e−µT πT
∑

n≥0

wn
1

√

p2 + (M̃0
n)2

e−r
√

p2+(M̃0
n
)2 , (3.2)

from which we read off

d = 4 : Ẽ0
n(p, T ) =

√

p2 + (M̃0
n)2 (3.3)

|vn(p, T )|2 = e−µT πTwn
√

p2 + (M̃0
n)2

. (3.4)

As expected, the effective string theory predicts exactly a free, relativistic dispersion rela-

tion for the closed string states. The situation is special in four dimensions in that there

are no inverse powers of r appear in c(p, r, T ) to this order.

3 dimensions

Repeating the exercise for d = 3,

c0(p, r, T ) = e−µT

∫ ∞

−∞
dx e−ipx

(

T

2
√

r2 + x2

)1/2
∑

n≥0

wne−M̃0
n

√
r2+x2

, (3.5)

we find

c0(p, r, T ) = e−µT r

√

T

4π

∑

n≥0

wn
(M̃0

n)3/2

√

p2 + (M̃0
n)2

(

K 3
4
(z+

n )K 1
4
(z−n ) + K 3

4
(z−n )K 1

4
(z+

n )
)

(3.6)

where

z±n ≡ r

2

(
√

(M̃0
n)2 + p2 ± |p|

)

. (3.7)

At this stage one can verify that expression (3.6) satisfies (2.9). Using the asymptotic

expansion for the modified Bessel functions yields

c0(p, r, T ) ∼ e−µT
√

πT
∑

n≥0

wn

√

M̃0
n

(M̃0
n)2 + p2

e−r
√

(M̃0
n
)2+p2



1 +

√

(M̃0
n)2 + p2

8r(M̃0
n)2

+ · · ·



 .

(3.8)

Keeping only the leading order term, we have:

d = 3 : Ẽ0
n(p, T ) =

√

p2 + (M̃0
n)2 (3.9)

|vn(p, T )|2 = e−µT

√

πTM̃0
n

p2 + (M̃0
n)2

. (3.10)

Thus the leading asymptotic form of c0 still satisfies eq. (2.10).
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4. The Lüscher-Weisz theory at two-loop order

In this section we shall compute the leading non-trivial corrections to the spectrum and

matrix elements in the closed string sector predicted by the Lüscher-Weisz effective theory.

Ref. [5] gives the general expression for the partition function at two-loop order:

Z(r, T ) =
∑

n≥0

wn{1 − [E1
n]T}e−E0

n
T , (4.1)

with [E1
n] the weighted average of the first-order energy shifts E1

n,i within the nth free-string

multiplet.

4 dimensions

For general values of the ‘low-energy constants’ (called c2 and c3), the corresponding closed-

string expansion reads [5]

Z(r, T ) = e−µT T

2r

∑

n≥0

wn e−M̃0
n
r

{

1 − [M̃1
n]r + (2c2 + c3)

[

4π

T 2
(n − 1

12
) +

1

2Tr

]}

. (4.2)

Starting from this expression, we can compute as before the expression of c1(p, r, T ), the

Fourier coefficient of Z(r, T ) with respect to the transverse coordinates:

c1(p, r, T ) = e−µT πrT
∑

n≥0

wn × (4.3)

{

1 + r[M̃1
n]

∂

∂u
+ (2c2 + c3)

4π

T 2
(n − 1

12
) +

2c2 + c3

2Tr

∫ ∞

rM̃0
n

du

}v=pr

u=rM̃0
n

I(4)(u, v)

with

I(4)(u, v) =
e−

√
u2+v2

√
u2 + v2

. (4.4)

What powers of r appear in this expression? To answer this question one may first inspect

the v = 0 case (zero momentum). It is easy to see that, while the free theory term gives a

contribution O(r0), the second term makes contributions O(r0) and O(r+1), and the fourth

one produces a whole series of inverse powers of r starting at r−1. While positive powers

of r, once exponentiated, give us the energy correction, the 1/r term is inconsistent with

the spectral representation of c. Therefore, requiring that such terms be absent yields the

constraint 2c2 + c3 = 0 (already obtained in [5]). It is remarkable that there are then no

inverse powers of r left at all.

For this special set of parameters, the closed-string energy corrections are [5]

d = 4 : M̃1
n(T ) = M̃0

n + [M̃1
n], [M̃1

n](T ) = −c2
(4π)2

T 3
(n − 1

12
)2. (4.5)

The final result is

c1(p, r, T ) =
∑

n≥0

|v1
n(p, T )|2 e−rẼ1

n
(p,T ) + O([M̃1

n]2) (4.6)
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where

Ẽ1
n(p, T ) =

√

p2 + (M̃0
n)2 +

M̃0
n [M̃1

n]
√

p2 + (M̃0
n)2

(4.7)

|v1
n(p, T )|2 = |v0

n(p, T )|2
(

1 − M̃0
n [M̃1

n]

p2 + (M̃0
n)2

)

. (4.8)

Eq. (4.7) implies that the relativistic dispersion relation is still satisfied to this order:

(Ẽ1
n(p, T ))2 = p2 + (M̃1

n)2 + O([M̃1
n]2), ∀n. (4.9)

Furthermore, we have

|v1
n(p, T )|2 Ẽ1

n(p, T ) = |v0
n(p, T )|2 Ẽ0

n(p, T )



1 + O





(

[M̃1
n]

M̃0
n

)2






 , ∀n. (4.10)

Thus d
dp2 (|v1

n|2 Ẽ1
n) vanishes to linear order in the energy correction, as expected from the

arguments of section 2.2. The corrections to the matrix elements is O(1/(σT 2)2).

3 dimensions

In 3 dimensions, the closed-string expansion reads [5]

Z(r, T ) = e−µT

√

T

2r

∑

n≥0

wne−M̃0
n
r

{

1 − [M̃1
n]r − c2

[

4π

T 2
(n − 1

24
) +

1

4Tr

]}

. (4.11)

The calculation is slightly more involved than in 4d. One can first write the Fourier

coefficient in the form:

c1(p, r, T ) = e−µT

√

Tr

4π

∑

n≥0

wn × (4.12)

{

1 − 4πc2

T 2
(n − 1

24
) + r[E1

n]
∂

∂u
− c2

4Tr

∫ ∞

rM̃0
n

du

}v=pr

u=rM̃0
n

I(3)(u, v)

where

I(3)(u, v) ≡ u3/2

√
u2 + v2

(

K 3
4
(z+)K 1

4
(z−) + K 3

4
(z−)K 1

4
(z+)

)

, (4.13)

z± being the solutions of the quadratic equation

z2 − z
√

u2 + v2 +
u2

4
= 0. (4.14)

The primitive of I(3)(u, v) is known: ∂
∂uJ (3)(u, v) = I(3)(u, v) with

J (3)(u, v) = −2
√

u K 1
4
(z+)K 1

4
(z−). (4.15)
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The result can thus be expressed concisely as

c1(p, r, T ) = e−µT

√

Tr

4π

∑

n≥0

wn × (4.16)

{[

1 − 4πc2

T 2
(n − 1

24
)

]

∂

∂u
+ r[E1

n]
∂2

∂u2
+

c2

4Tr

}v=pr

u=rM̃0
n

J (3)(u, v)

It is now most efficient to first expand J (3)(u, v) before applying the various derivatives.

Requiring that the leading 1/r term (which comes from the first and the last term in the

curly brackets) vanishes leads to the condition c2 = 1
2σ , thus confirming the result obtained

by Lüscher and Weisz [5]. Some further algebra then leads again to the result (4.7) for the

dispersion relation with the energy corrections given by

[M̃1
n] = −(4π)2

2σT 3
(n − 1

24
)2, (4.17)

while the correction to the matrix elements is

|v1
n(p, T )|2 = |v0

n|2
(

1 − 2π

σT 2
(n − 1

24
) +

[M̃1
n]

8M̃0
n

3p2 − 5(M̃0
n)2

p2 + (M̃0
n)2

)

(4.18)

= |v0
n|2

(

(

1 − π

σT 2
(n − 1

24
)

)2

+

(

2π

σT 2
(n − 1

24
)

)2 (σT )2 − p2

(σT )2 + p2
+ O(1/(σT 2)3)

)

.

It is straightforward to verify that d
dp2 (|v1

n|2 Ẽ1
n) is again O([M̃1

n]2).

In the light of the examples seen, it is clear that the general prescription to obtain

the dispersion relation from the closed-string representation of the partition function can

be given: a positive power m of r inside the curly braces of eq. (4.11) is replaced by

(−r ∂
∂u)m inside the curly braces of eq. (4.12) and a negative power m of r is replaced by

r−m

m!

∫ ∞
rM̃0

n

du1 . . . dum. In general, both lead to energy corrections and to terms containing

a negative power of r. The latter must be required to cancel order by order.

5. The free string with one finite transverse dimension

In this section, we consider the possibility of having one dimension (say 1̂) transverse to

the plane defined by the two Polyakov loops finite and of length L. The parameter L−1

may then also be interpreted as a temperature at which the gauge theory is probed. In

that respect, we remark that studying the dynamics of the ‘spatial’ QCD string has the

advantage (over the ordinary electric one) that the closed strings can be kept arbitrary

long independently of L, while winding modes around that periodic dimension play an

important role, as we shall see.

In [15], it was argued, using the XY model, that when L is finite but large compared to

σ−1/2, the massless fluctuations of the string are unaffected by the size of L: the corrections

would appear only in terms in En suppressed by a power of R greater than 3. The string

tension itself, however, becomes a function of L. Thus it is legitimate in this regime to

investigate the properties of the ‘spatial’ Polyakov loop correlator using the free-string

partition function.
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It is then natural to ask what one obtains for Z0 if, working backwards, one uses the

expression (3.2) for c0 (which was derived from Z0 when L = ∞) and sums over the now

discretized momenta p1 = 0,±2π
L , . . . (compare with eq. (2.3)):

Z0(x1, r, T, L) = e−µT πT
∑

n≥0

wn
1

L

∑

p1

eip1x1

∫ ∞

−∞

dp2

2π

e−r
q

p2
1+p2

2+(M̃0
n
)2

√

p1 + p2
2 + (M̃0

n)2
. (5.1)

Upon integrating over p2 and using Poisson’s summation formula 1
L

∑

p =
∑

m∈Z

∫ ∞
−∞

dp
2π ,

one then finds

Z0(x1, r, T, L) =
∑

m∈Z

Z0(
√

(mL + x1)2 + r2, T ). (5.2)

To interpret this result, let us choose x1 = 0 and go to the open string representation of

Z0(r, T ). The energy eigenstates are

Emn(r, L) = µ + σ(L)
√

r2 + m2L2 +
π√

r2 + m2L2

(

− 1

24
(d − 2) + n

)

, n ≥ 0,m ∈ Z

(5.3)

and they have weight wn for all m. In particular, the partition function (eq. (5.2)) is

consistent with open-closed string duality. Given that the direction L was taken as periodic,

it is clear that we have obtained a sum over classical configurations (labelled by m) of the

open string joining the two static charges along straight paths winding an arbitrary number

of times m around the periodic dimension, with vibrational states (labelled by n) built up

on each of these classical string configurations. The same result (5.2) is obtained in three

dimensions (starting from the asymptotic form (3.8)). The dual nature of the open and

closed string expansions of Z0 is manifest here, for having fewer momenta in the closed

string channel corresponds to more states in the open string channel.

We have however not taken into account the fact that the pure SU(N) gauge theory

has a centre symmetry which is unbroken for L À σ−1/2 and thus forbids states of different

N -ality to mix. Since the ‘spatial’ Polyakov loops are invariant under this symmetry, the

open-string states can only have winding numbers that are multiples of N . On the closed-

string side, this would however imply that the quantum of momentum has to be 2π
NL rather

than 2π
L . It is presently unclear to the author if the states with a fraction of the normal

unit of momentum can be given a sensible interpretation, for instance as winding modes

of the closed strings2.

Finally, we remark that the winding modes do not generate a phase transition on

the worldsheet. The reason is that their entropy factor is too weak. Rather we expect

worldsheet-tearing configurations such as the vortices of the XY model to drive the phase

transition [15] where the central charge of the string theory drops from π
12 to π

24 in d = 4 (or

from π
24 to zero in d = 3). Provided the dimensionally reduced action for hot QCD correctly

describes the asymptotic high-temperature behaviour of its magnetic observables, then this

phenomenon must occur at a certain L∗ [15]. This is currently being tested numerically [18].

2When L < 1/Tc, where Tc is the deconfining temperature of the gauge theory, the centre symmetry is

broken, so this difficulty is absent.
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6. Conclusion

We have shown explicitly that the effective string theory of Lüscher and Weisz predicts a

relativistic dispersion relation for the closed winding flux states of SU(N) gauge theories

in 3 and 4 dimensions up to two-loop order included. The matrix elements of Polyakov

loop operators between them and the vacuum were derived as a by-product. Assuming the

closed-string spectrum to be unchanged in the presence of a compact transverse dimension

directly led to the existence of winding modes of the open strings around the compact

dimension.

At a more general level, we have considered a long-distance effective theory for the

Polyakov loop correlator in SU(N) gauge theory that imposes consistency with the spectral

representation in the crossed channel (closed-string representation) order by order in the

inverse Euclidean separation. We have shown that this is sufficient to insure relativistic

kinematics for the energy eigenstates of that channel. It is well-known that bosonic string

theory, as a theory valid for all distance scales, is only consistent with Lorentz symmetry

in 26 dimensions. Nevertheless, in a non-critical number of dimensions, bosonic string

theory can be reconciled with space-time symmetry order by order in an expansion around

classical, elongated string configurations, a conclusion already reached in [16].
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[2] M. Lüscher and P. Weisz, Quark confinement and the bosonic string, JHEP 07 (2002) 049

[hep-lat/0207003].

[3] P. Majumdar, The string spectrum from large Wilson loops, Nucl. Phys. B 664 (2003) 213

[hep-lat/0211038].

[4] M. Caselle, R. Fiore, F. Gliozzi, M. Hasenbusch and P. Provero, String effects in the Wilson

loop: a high precision numerical test, Nucl. Phys. B 486 (1997) 245 [hep-lat/9609041].

[5] M. Lüscher and P. Weisz, String excitation energies in SU(N) gauge theories beyond the

free-string approximation, JHEP 07 (2004) 014 [hep-th/0406205].

[6] M. Caselle, M. Panero and P. Provero, String effects in Polyakov loop correlators, JHEP 06

(2002) 061 [hep-lat/0205008].

[7] M. Caselle, M. Pepe and A. Rago, Static quark potential and effective string corrections in

the (2+1)D SU(2) Yang-Mills theory, JHEP 10 (2004) 005 [hep-lat/0406008].
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